PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization
نویسندگان
چکیده
To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it more sensitive than conventional non-return-to-zero line evaluate received signal quality when using adaptive coefficient settings a equalizer during transmission, we propose an eye-opening monitor technique based on machine learning. The proposed uses Gaussian mixture model classify symbols. Simulation experimental results demonstrate feasibility of equalization
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملColor Image Segmentation using Adaptive Spatial Gaussian Mixture Model
An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous regi...
متن کاملTraffic Video Segmentation Using Adaptive-K Gaussian Mixture Model
Video segmentation is an important phase in video based traffic surveillance applications. The basic task of traffic video segmentation is to classify pixels in the current frame to road background or moving vehicles, and casting shadows should be taken into account if exists. In this paper, a modified online EM procedure is proposed to construct Adaptive-K Gaussian Mixture Model (AKGMM) in whi...
متن کاملAutomatic Image Equalization and Contrast Enhancement Using Gaussian Mixture Modelling
In this paper, we propose an adaptive image equalization algorithm which automatically enhances the contrast in an input image. The algorithm uses Gaussian mixture model (GMM) to model the image grey-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input grey-level intervals. The contrast equalized ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2021
ISSN: ['0916-8532', '1745-1361']
DOI: https://doi.org/10.1587/transinf.2020lop0007